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ABSTRACT

Epidemics of infectious diseases are an important threat
to public health and global economies. The intervention in
epidemics is essential, which aims to minimize the total num-
ber of infected people and, at the same time, minimize the
amount of intervention on human mobility. However, the
complexity of pre-symptomatic patients and dynamic human
mobility cause significant challenges for developing efficient
intervention strategies for epidemic diseases. For this reason,
we first use the visit history of each area to calculate the
health probability of each person, so as to find the most
likely pre-symptomatic patients. Then, a Hierarchical Rein-
forcement Learning Intervention (HRLI) model is proposed
to automatically learn intervention strategies based on the
information gathered from the individuals and the area of
residences. The model can take the advantage of hierarchical
supervision to realize the macro-control in an area of res-
idence and precise intervention for each individual in this
residence, respectively.
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1 INTRODUCTION

The new corona-virus disease 2019 (COVID-19), a newly e-
merged epidemics disease, is a serious threat to public health
and global economy. The long incubation period of this dis-
ease makes it difficult to identify the infected individuals, and
leads to a large consumption of human resources and medical
resources. Timely intervention is crucial for combating epi-
demics like COVID-19, in order to minimize the total number
of infected people, at the same time, reduce the impact of
interventions on people’s daily life to the minimum. Based on
this, we first use the visit history of each area to calculate the
health probability of each person, so as to find the potential
infected people. Then, a Hierarchical Reinforcement Learning
Intervention (HRLI) model is proposed to automatically learn
intervention strategies based on the information gathered
from the individuals and the area of a residence. Specifically,
the residence and each individual are model as two agents
and their decision making processes as two Markov Decision
Processes (MDPs). The two agents can coordinate the deci-
sion making processes through the risk level, which is define
based on the infected number of the residence. The residence
uses the DQN [2] algorithm to dynamically adjust the risk
level. Meanwhile, the individual takes risk level of its of its
residence as a dimension of state and trains with the PPO [3]
to obtain the probability boundary of intervention actions.
Our model has the following advantages:

∙ It can ultimately take the advantage of hierarchical
supervision to realize the macro-control in an area of
residence and precise intervention for each individuals
in this residence.

∙ We use the effective reproduction ratio [1] to define the
reward in each day so as to solve the problem of sparse
reward in the epidemics.

in order to find an optimal intervention strategy.

2 THE HRLI MODEL OF EPIDEMICS

In this section, we first introduce the basic epidemiological
simulation model. Then, we propose a health probability
model, which uses the individual’s visit history to calculate
its health probability. Next, the MDPs for decision making
in a residence area and each individual are introduced, re-
spectively. Finally, we propose the HRLI model, in order to
learn an effective epidemic intervention strategies.

2.1 The Epidemiological Model

The epidemiological model [4] aims to seek for the best in-
tervention strategy based on five simulated scenarios of 10K-
people over 60 days. The basic scenario assumes that each
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individual goes to a working area during weekdays and visits
a commercial area during weekends. Virus is transmitted with
a certain probability when two people are in the same area.
Except the basic scenario, there are another four scenarios
where some changes have been made, such as: higher infec-
tion rates, larger number of areas, larger infected population
at the beginning and longer working hours. More details of
the simulation model can be found at the website of the
Challenge on Mobility Intervention for Epidemics [5].

An individuals health status follows the stages as below:
susceptible, pre-symptomatic, symptomatic, critical and re-
covered. Meanwhile, there are five intervention actions: no
intervene, confine (in an area), quarantine (in the home),
isolate (no contact with anyone), and hospitalize. The goal
of the epidemiological model is to minimize the total number
of infected people and the amount of intervention on human
mobility. Therefore, the evaluation metric 𝑆𝑐𝑜𝑟𝑒 is a com-
bination of the total number of interventions and infected
people, as follows

𝑆𝑐𝑜𝑟𝑒 = 𝑒
𝐼

500 + 𝑒
𝑄

10000 (1)

where 𝐼 denotes the accumulated number of infected peo-
ple on 60 days, 𝑄 = 𝑁ℎ𝑜𝑠 + 0.5𝑁𝑖𝑠𝑜 + 0.3𝑁𝑞𝑢𝑎 + 0.2𝑁𝑐𝑜𝑛

denotes the weighted sum of the number of people being in-
tervened, and 𝑁ℎ𝑜𝑠, 𝑁𝑖𝑠𝑜, 𝑁𝑞𝑢𝑎 and 𝑁𝑐𝑜𝑛 denote the number
of hospitalized, isolated, quarantined and confined people,
respectively.

2.2 The Healthy Probability Model

The difficulty of epidemiological model mainly lies in how to
identify the pre-symptomatic infected patients and which
intervention to take for the undiscovered (including pre-
symptomatic and symptomatic) people. Therefore, an in-
fection probability model is proposed to calculate the current
health probability 𝑃 of each person. The specific process is
as follows:

Step 1: Determine the current health status and infection
status of the 10K-individuals at the start of one day. The
health probability 𝑝 of all individuals is initialized to 1.

Step 2: Obtain the current discovered (suspected or in-
fected) set and healthy (susceptible or pre-symptomatic) set
of people.

Step 3: The health probability of all individuals in the
discovered set is set to 0.

Step 4: In order to cut off the spread of the epidemic as
quickly as possible, all individuals in the discovered set are
send to be hospitalized or isolated. Only those who become
recovered can regain freedom.

Step 5: Obtain the visit history in the past 5 days for
each area. Then, pick out the set of discovered individuals
𝑆𝑒𝑡𝑑𝑖𝑠 and the set of healthy individuals 𝑆𝑒𝑡ℎ𝑒𝑎 in each hour,
respectively.

Step 6: The health probability 𝑝𝑖 of each individual 𝑖 in
the 𝑆𝑒𝑡ℎ𝑒𝑎 can be expressed as follows:

𝑝𝑖 = 𝑝𝑖 * (1−
𝑝𝑠 *𝑁𝑑𝑖𝑠

𝑁ℎ𝑜𝑢𝑟 + 𝑒−7
) (2)

where 𝑝𝑠 denotes the probability that an individual can be
infected from a stranger contact, 𝑁𝑑𝑖𝑠 and 𝑁ℎ𝑜𝑢𝑟 denote the
number of discovered individuals and healthy individuals,
respectively.

Step 7: For each infected individual, the 𝑆𝑒𝑡ℎ𝑒𝑎 can be
divided into acquaintances and strangers. The probability
𝑝𝑐 being infected by acquaintances is much higher than 𝑝𝑠.
Using the Eq (2), the health probability of acquaintances will
be higher than the actual value, which would increase the
spread of the epidemic. In order to make this model more
accurate, the health probability of acquaintances should be
adjusted as follows:

𝑝𝑗 = 𝑝𝑗 * (1− 𝑝𝑐) (3)

where 𝑗 denotes an acquaintance of the 𝑆𝑒𝑡ℎ𝑒𝑎.
After the above steps, we can obtain the health probability

of each individual. However, it is still difficult to decide
which intervention action should be chosen. Therefore, we
will introduce our HRLI model to solve this problem.

2.3 The Formulation of MDPs

In real life, both residences and individuals would take mea-
sures during an epidemic outbreak. Inspired by this, we model
the residence and each individual as two agents and their
decision making processes as two MDPs, in order to find an
optimal intervention strategy.

2.3.1 MDP for Residence. We first define a risk level accord-
ing to the number of infected people (𝑁𝑟𝑒𝑠) in each residence.
Table 1 shows the specific information of the risk level.

Table 1: The risk level of a residence.

Infected number Risk level Meaning

𝑁𝑟𝑒𝑠=0 1 No-risk
0<𝑁𝑟𝑒𝑠 ≤ 10 2 Low-risk
10<𝑁𝑟𝑒𝑠 ≤ 50 3 General-risk
50<𝑁𝑟𝑒𝑠 ≤ 100 4 Medium-risk
100<𝑁𝑟𝑒𝑠 ≤ 500 5 High-risk

500<𝑁𝑟𝑒𝑠 6 Serious-risk

In our model, each residence can use information of itself to
adjust the risk level dynamically. Here, we show the specific
definition of MDP for each agent (residence).

State 𝑆𝑟𝑒𝑠 : The state of a residence is composed of

2 features, including
𝑁

𝑖𝑛𝑓
ℎ
𝑁ℎ

,
∑︀𝑁ℎ𝑒𝑎

ℎ
𝑛=1 𝑝𝑛

𝑁ℎ𝑒𝑎
ℎ

, where 𝑁 𝑖𝑛𝑓
ℎ , 𝑁ℎ and

𝑁ℎ𝑒𝑎
ℎ denote the number of infected (symptomatic and criti-

cal) people, the number of all people and the health people
(except for the discovered patients) in the ℎ-th residence,
respectively.

Action 𝐴𝑟𝑒𝑠: The action includes three measures: raising
the risk level, reducing the risk level and keeping the risk
level unchanged.

Reward 𝑅𝑟𝑒𝑠: The reward can be expressed as as follows

𝑅𝑟𝑒𝑠 = −(𝑒
𝐼𝑟𝑒𝑠

500 + 𝑒
𝑄𝑟𝑒𝑠

10000 ) (4)
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where 𝐼𝑟𝑒𝑠 denotes the additional number of infected people
on each day, 𝑄𝑟𝑒𝑠 = 𝑁𝑟𝑒𝑠

ℎ𝑜𝑠 + 0.5𝑁𝑟𝑒𝑠
𝑖𝑠𝑜 + 0.3𝑁𝑟𝑒𝑠

𝑞𝑢𝑎 + 0.2𝑁𝑟𝑒𝑠
𝑐𝑜𝑛

denotes the weighted sum of the number of people who are in-
tervened on each day, and 𝑁𝑟𝑒𝑠

ℎ𝑜𝑠, 𝑁
𝑟𝑒𝑠
𝑖𝑠𝑜 , 𝑁

𝑟𝑒𝑠
𝑞𝑢𝑎 and 𝑁𝑟𝑒𝑠

𝑐𝑜𝑛 denote
the additional number of hospitalized, isolated, quarantined
and confined people, respectively.

2.3.2 MDP for Individual. The specific definition of MDP for
each individual is showed as follows:

State 𝑆𝑖𝑛𝑑: The state of an individual is composed of 11
features, including the risk level of its residence, its health
probability, intervention state, infection state, the total num-
ber of infected people, the total number of hospitalized people,
the total number of isolated people, the total number of quan-
rantined people, the total number of confined people, the total
number of stranger contacts and the total number of acquain-
tance contacts.

Action 𝐴𝑖𝑛𝑑: For each individual, the action includes
three probabilities: < 𝑝1, 𝑝2, 𝑝3 > (0 ≤ 𝑝1 ≤ 𝑝2 ≤ 𝑝3 ≤ 1).
They meet the following rules in the Table 2.

Table 2: The relationship between intervention ac-
tions and health probability.

The health probability Intervention actions

0 ≤ 𝑝 ≤ 𝑝1 no intervene
𝑝1 ≤ 𝑝 ≤ 𝑝2 confine
𝑝2 ≤ 𝑝 ≤ 𝑝3 quarantine
𝑝3 ≤ 𝑝 ≤ 1 isolate

Reward 𝑅𝑖𝑛𝑑, �̂�𝑖𝑛𝑑: The long-term reward 𝑅𝑖𝑛𝑑 of 60
days can be expressed as the negative of the evaluation metric
𝑆𝑐𝑜𝑟𝑒. However, the epidemiological model is a sparse reward

space and the short-term reward �̂�𝑖𝑛𝑑 of each day is not
defined. Therefore, an theoretical concept in communicable
disease epidemiology, effective reproduction ratio 𝑅0, can be
used to define the reward value of each day. 𝑅0 denotes the
expected number of secondary cases of an infection. If 𝑅0 is
greater than one, a newly introduced infection may lead to a
large epidemic in a completely susceptible population. If 𝑅0

is less than one, the total size of a newly introduced outbreak
will remain small [1]. By combining long-term reward 𝑅𝑖𝑛𝑑

with short-term reward �̂�𝑖𝑛𝑑, the reward of the individual
can be expressed as follows:

𝑅𝑖𝑛𝑑 = −𝑆𝑐𝑜𝑟𝑒 𝑖𝑓 𝑑𝑎𝑦 = 60

�̂�𝑖𝑛𝑑 = −1 𝑖𝑓 𝑑𝑎𝑦 < 60 𝑎𝑛𝑑 𝑅0 > 1

�̂�𝑖𝑛𝑑 = 1 𝑖𝑓 𝑑𝑎𝑦 < 60 𝑎𝑛𝑑 𝑅0 ≤ 1

(5)

2.4 The HRLI Model

Figure 1 shows the flow chart of of HRLI model. In this model,
the residence is designed as the top-level structure to adjust
the risk level dynamically. Each individual is designed as the
bottom-level structure, in order to handle each individual
precisely and take the most reasonable intervention action.

Figure 1: The flowchart of the HRLI model.

Specifically, the health probability model is first used to
calculate the current health probability of the 10K-people.
Then, the residences and individuals use DQN [2] and PPO
[3] to learn a intervention strategy, respectively. We take 60
days as an episode and keep training the model until the
reward converges.

3 CONCLUSIONS AND FUTURE
WORK

Although the preliminary model has achieved some improve-
ments, it still could not achieve the optimal strategy. In the
future, we will continue to improve it from the following
aspects:

∙ The risk level of a residence is the most important
feature to coordinate the decision making processes be-
tween the two layers. Therefore, more precise definition
and calculation of the risk level is essential.

∙ The definition of MDP needs to be adjusted to get
more reasonable reward and state.

∙ More collaborative mechanisms can be added. For ex-
ample, when taking measures for the overall risk level,
the information of the neighboring residence can be
considered.

REFERENCES
[1] K. Dietz. [n.d.]. Reproduction Number. American Cancer Society.
[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,

Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013.
Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013).

[3] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347 (2017).

[4] Unkown. [n.d.]. https://hzw77-demo.readthedocs.io/en/round2/
simulator modeling.html.

[5] Unkown. [n.d.]. https://prescriptive-analytics.github.io/.

https://hzw77-demo.readthedocs.io/en/round2/simulator_modeling.html
https://hzw77-demo.readthedocs.io/en/round2/simulator_modeling.html
https://prescriptive-analytics.github.io/

	Abstract
	1 Introduction
	2 THE HRLI MODEL OF EPIDEMICS
	2.1 The Epidemiological Model
	2.2 The Healthy Probability Model
	2.3 The Formulation of MDPs
	2.4 The HRLI Model

	3 CONCLUSIONS AND FUTURE WORK
	References

