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ABSTRACT
Due to complexity of social phenomena, it is a big challenge to
predict the curves of epidemics that spread via social contacts and
to control such epidemics. Misguided policies to mitigate epidemics
may result in catastrophic consequences such as financial crisis,
massive unemployment, and the surge of the number of critically
ill patients exceeding the capacity of hospitals. In particular, un-
der/overestimation of efficacy of interventions can mislead policy-
makers about perception of evolving situations. To avoid such pit-
falls, we propose Expert-in-the-Loop (EITL) prescriptive analytics
using mobility intervention for epidemics. Rather than employing a
purely data-driven approach, the key advantage of our approach is
to leverage experts’ best knowledge in estimating disease spreading
and the efficacy of interventions which allows us to efficiently nar-
row down factors and the scope of combinatorial possible worlds.
We introduce our experience to develop Expert-in-the-Loop simu-
lations during the Challenge on Mobility Intervention for Epidemics.
We demonstrate that misconceptions about the causality can be
corrected in the iterations of consulting with experts, developing
simulations, and experimentation.

CCS CONCEPTS
• Information systems → Geographic information systems;
• Computing methodologies→ Agent / discrete models.
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1 INTRODUCTION
Predicting human behaviors and the resulting spread of a pandemic
is a tremendous challenge due to complexity (and often irrational-
ity) of humans. Physicist Murray Gell-Mann, Nobel laureate who
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conceived the quark, famously said “Imagine how hard physics
would be if electrons could think” [3]. To predict pandemic spread
the atoms that comprise the model for simulation and predict are
indeed humans. The difficulty of predicting disease pandemics is ev-
ident by the large variance, within and between models, to predict
the spread of COVID-19 [2]. This uncertainty misguides policies to
mitigate epidemics and may result in catastrophic consequences
such as financial crisis, massive unemployment, and the surge of
the number of critically ill patients exceeding the capacity of hos-
pitals. We’ve observed these consequences in the United States
as a result of COVID-19. In particular, misunderstanding of risks
and under/overestimation of efficacy of interventions can mislead
policymakers about perception of evolving situations.

To improve prescriptive analytics for decision making, we pro-
pose Expert-in-the-Loop (EITL) prescriptive analytics using mobil-
ity intervention for epidemics. The key advantage of our approach is
to leverage experts’ best knowledge in estimating disease spreading
and the efficacy of interventions which allows us to efficiently nar-
row down factors and the scope of combinatorial possible worlds.
To manage uncertainty [8], we introduce our experience to develop
simulations during the Challenge on Mobility Intervention for Epi-
demics [1]. We demonstrate that misconceptions about the causality
can be corrected in the iterations of consulting with experts, devel-
oping simulations, and experimentation.

2 EXPERT-IN-THE-LOOP FRAMEWORK
In this section, we introduce our EITL framework, the goal of which
is to (1) discover or update ground truths; (2) evaluate the efficiency
and efficacy of each intervention in different situations; and (3)
reduce combinatorial search space for optimization efficiently.

The motivation of our EITL stems from an hands-on experi-
ence of development of agent-based epidemic simulations [5, 6]
and familiarity of the challenge designers’ perspective against chal-
lengers1. Similar to the Challenge on Mobility Intervention for Epi-
demics, as a challenge designer, we have provided a black-box model
that allows challengers to obtain only observable information and
conduct experiments to find prescriptions. Due to complexity of
social interactions in the simulation, it is a great obstacle for the
challengers to discover ground truths.

In line with our formal experience, we aim at discovering ground
truths prior to the outset. We explored multiple directions to under-
stand the feasibility of each approach–given limited resources–to
mitigate the simulated pandemic while also minimizing the cost
of prescriptions. These approaches included genetic algorithms
(GA), genetic programming (GP), reinforcement learning (RL), and
rule-based heuristics. Each technique has pros and cons and best
practices are to select methods that fit a specific task in the process.
1Geo-social simulation project web site: https://geosocial.joonseok.org
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(a) Ground Truth (Scenario 1)
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(b) Estimated model (Scenario 1)
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(c) Ground Truth (Scenario 2)
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(d) Estimated model (Scenario 2)

Figure 1: Comparison of epidemic dynamics between ground truth and calibrated model

For EITL, we repeat the following four steps: 1) to develop heuris-
tics/rules to prescribe actions to agents, 2) optimize parameters of
these rules to minimize evaluation score, 3) evaluate patterns within
the results by consulting experts to understand resulting patterns
and interpret causality, and 4) re-adjust the rules following our
understanding and intuition.

Since it is difficult to control all factors that may influence out-
comes, misconceptions about public health are common. In 1854,
until John Snow [7], for example, traced the source of a cholera epi-
demic to a specific water pump, people regarded cholera as airborne
epidemic.

To correct such a bias to the simulated world, we utilize modeling
and simulation (M&S) to model the system as predictive and pre-
scriptive analytics. Unlike black-box machine learning techniques,
modeling and simulation provides deep understanding of the in-
terested system. It is worth noting that the process of M&S allows
experts to elaborate their knowledge and validate their theory and
reasoning.

3 APPLICATION
The rest of the paper describes a best practice of applying EITL to
Challenge on Mobility Intervention for Epidemics [1] and results.

3.1 Feasibility Study
In the real world, an expert group in response to epidemics may
consist of epidemiologists, clinicians, social scientists, policy mak-
ers, health economists, community representatives and experienced
simulation modelers. Its composition depends on disease types and
society. In our settings, we leverage the simulator documentation
[1] as the best knowledge including human mobility patterns, a
disease model, feasible interventions, and its costs, obtained by
the expert group consisting of epidemiologists, geoinformation
scientists, social scientists, health economists, and policy makers.
To validate our knowledge or ground truths, we develop micro-
simulations that mimic the epidemic simulator. The main reason
of adopting micro-simulations, instead of agent-based simulations
[4], in this case is because we aim at statistical validation, and
micro-simulations are sufficient to achieve our goal. The model
includes the process of instanciating patient zeros who inherit the
disease from the system without any contacts with other infectious
individuals.

To understand the ground truth disease model, we conducted
experiments by confining the population such that all agents stay

in their neighborhood. After many iterations of modeling and cali-
bration, we could find a disease model that behaves similar to the
ground truth model. Figure 1 shows comparison of disease progres-
sion between the ground truth model and our estimated model in
two different scenarios (see [1] for more information). It is worth
noting that any subtle changes in the parameter configuration such
as distribution of family, disease transmission period, or recovery
period influence the shape of the curves. The process provides us a
handle to control diseases with accurate estimation. If the model
and parameters are inaccurate, interventions are ineffective hav-
ing both huge false positive and false negative cases. For example,
if we overestimate the probability of infection, then we are more
likely to isolate or quarantine unnecessarily which leads to high
intervention costs.

We categorize cases of transmission of epidemic into three: ac-
quaintance contacts, stranger contacts, and unknown (also known
as a patient zero). Given a probability 𝑃𝑐 for an individual to get
infected from an infected acquaintance contact and a probability 𝑃𝑠
for an individual to get infected from an infected stranger contact,
the probability 𝑃 that individual 𝑥 gets infected is:

𝑃 (𝑥) = 1 −
𝑡∏
𝑖=1

(1 − 𝑃𝑐 · 𝑎𝑖 ) · (1 − 𝑃𝑠 · (𝑎𝑖 + 𝑠𝑖 )/𝑛𝑖 ), (1)

where 𝑎𝑖 is the number of acquaintance contacts with infectious
individual at time 𝑖 , 𝑠𝑖 is the number of stranger contacts with
infectious individuals at time 𝑖 , 𝑛𝑖 is the number of individuals
where 𝑥 is located at time 𝑖 . We found that randomly selected
patient zeros in Scenarios 1, 3, and 5 appear following the Poisson
distribution where 𝜆 ≈ 2.4 person a day.

Based on experimentation, we discovered the efficacy of four
intervention types (confinement, quarantine, isolation, and hospi-
talization).

• Confinement: Confined individuals are allowed to interact with
others in the same neighborhood including acquaintances. It
mitigates at some level reducing major epidemic spreads from
working areas. Acquaintance contacts are the main contribution
and the number of acquaintance contacts at work is much larger
than residential areas. This option is efficient and effective when
the number of infections drastically increases (Scenario 2) or the
number of infections is large (Scenario 4).

• Quarantine: Initially, experts assumed quarantined individuals
contact only their acquaintances staying at home. However, by
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experimentation we found that diseases from self-quarantined pa-
tients are transmitted to a stranger, which is plausible in the real
world. We also discovered its efficacy is similar to confinement,
but it is more expensive. This empirical findings is important
for policymakers to make right decisions. For such a reason, our
prescriptions do not use quarantine.

• Isolation: Empirically, we found the self-recovery period is dis-
tributed from 15 to 30 days including the pre-symptomatic period.
To isolate infectious individuals is the most effective option to
stop spreading from them since no contacts are allowed with the
isolated individuals.

• Hospitalization: Similar to isolation, the hospitalized patients are
not allowed to contact others. Since there is no penalty on critical
cases nor reward on recovered cases, it has no merit of hospital-
ization, which is twice expensive than isolation. Therefore, we
exclude hospitalization from interventions.

We take advantages of this knowledge to reduce the combinatorial
search space for optimization.

3.2 Mitigation Strategies
Leveraging these observations, we optimize the combination of
two types of interventions, namely confinement and isolation. To
decide which agents to confine/isolate, we compute an infection
probability (see Eq. 1) and a risk factor for each agent. A risk factor
of an agent is a measure of how dangerous an individual would be if
they were pre-symptomatic in such a way that the expected number
of infections is estimated using their number of acquaintances and
daily number of co-located agents. We categorize Scenarios 1, 3,
and 5 into the same group using the same heuristics/rules due to its
similarity. We highlight mitigation strategies for Scenarios 2 and
4 while strategies for other scenarios can be explained under the
following general rules2.

3.2.1 General rules. While infections from acquaintance contacts
and stranger contacts can be inferred by contact tracing, there is no
clue to infer who is a patient zero until they are discovered. Thus,
whenever a new case is discovered, we isolate the symptomatic
individual and select susceptible individuals with the high infection
probability. There is the trade-off between the number of infec-
tions and the number of interventions. That is, if we isolate more
individuals in question by decreasing a threshold 𝜎 , the number of
pre-symptomatic individuals is more likely to decrease. If 𝜎 is too
high, however, it ends up with more isolation because the number
of infection cases increase. Therefore, it is the main challenge to
find a perfect 𝜎 to make the balance between two measures.

Another dimension we take into account is a risk factor. Non-
symptomatic individuals are isolated if the product of the proba-
bility and a risk factor exceeds a threshold 𝜖 . Suppose that there
are two non-symptomatic individuals 𝑥 and 𝑦 having the same
infection probability. If 𝑥 has more acquaintances than 𝑦, then the
risk of not isolating 𝑥 is higher than that of 𝑦. Therefore, 𝑥 is more
likely to be isolated than 𝑦.

3.2.2 Scenario 2. The pandemic of Scenario 2 has higher infection
rates where 𝑃𝑐 = 0.05 and 𝑃𝑠 = 0.01. Due to high infection rates, we
need to isolate more aggressively, lowering threshold 𝜎 . However,
2Source code is available at https://github.com/joonseok-kim/kdd-papw20-challenge

controlling only 𝜎 is not sufficient to mitigate the spread of the
pandemic due to high reproduction number. Our tactic for this
scenario is to prevent gatherings with eleven or more people. If an
individual has 𝑛 > 10 acquaintances in a working area, we confine
the individual with a probability (𝑛 − 11)/𝑛. This strategy can be
seen as a work-from-home order.

3.2.3 Scenario 4. Scenario 4 is the extreme case that shows a trade-
off between the number of accumulated infections and intervention
costs. At the beginning, 300 pre-symptomatic are spawned andmore
than 100 susceptible individuals get infected from them during the
first day. About 100-200 symptomatic cases including about 60
patient zeros are discovered the very next day. Therefore, about
240 patient zeros are unknown and our goal is to cost-effectively
suppress initial spreading. Along with potential cases, we randomly
select many individuals with high risk factors to isolate. Similar to
Scenario 2 we prevent gatherings having more than five people in
the working areas. We release them to reduce costs and the next
day we repeat this process to find more pre-symptomatic cases.

4 CONCLUSION
In this paper, we introduced the Expert-in-the-Loop prescriptive
analytics that leverages experts’ best knowledge. While AI and
machine learning can outperform in well defined problems such
as optimization, experts can expedite the optimization process by
means of modeling such a problem and choosing right tools. We
also demonstrated how simulations can be used to discover ground
truths as groundwork for prescriptive analytics. Although our miti-
gation strategies yielded fairly good results for general cases, we
still have difficulty to narrow down the complex combination of
rules for Scenario 2 and Scenario 4. In order to tackle the combina-
tion of rules, we will leverage evolutionary algorithms to explore
diverse possible worlds for the future work.
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