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ABSTRACT
In this paper we focus on the problem of containing an epidemic
outbreak by selectively limiting the mobility of individuals. In a
viral epidemic, such as the COVID-19 pandemic that we are cur-
rently facing, governments can enforce restrictions on a global or
individual level, for example they may impose a country lockdown
or they may quarantine only the suspected cases. We propose a
solution that combines a high-recall model with a high-precision
model, to select more or less individuals for isolation depending
on the current infection rate, with the goal of minimizing both the
number of interventions and the number of resulting infected cases.
The solution placed third in the PAPW2020 Workshop Challenge
on Mobility Intervention for Epidemics.
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1 INTRODUCTION
In an effort of contrasting an epidemic outbreak, different strategy
for human mobility restrictions can be applied. An optimal strat-
egy for intervention policies is a strategy that, at the same time,
minimizes both the spread of infections and the interventions on
mobility.

In this context, the predicted fraction of infected population,
or, on an individual scale, the predicted risk of infection based on
contact tracing, should drive the direction and the extent of mobility
restrictions, a problem that fits well in the paradigm of Prescriptive
Analytics. In Prescriptive Analytics, predictive models and control
models are combined to optimize a joint objective.

In the specific problem ofmanagingmobility restrictions through
prediction and control, the two costs of infections and interventions
have strong ties with the concepts of precision and recall. Suppose
that we aim at predicting and thus isolating the individuals who are
infected but not yet discovered. Being bound by the precision/recall
tradeoff, we could have a high precision but low recall prediction,
intervening on few right individuals while many cases will keep
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spreading, or we could have a high recall, low precision predictions,
in which case the epidemic will quickly stop but with the cost of
many unneeded interventions. This is better illustrated in Figure 1.
Moreover, if the infection rate is very high, precise contact tracing
is not a viable solution [1], leaving a full lockdown as the only
option, that would be the equivalent of using a very high recall
model.
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Figure 1: Example of the relation between precision, recall,
infection cost and intervention cost in prescriptive analytics
for mobility interventions in epidemics.

In this paper we propose an approach that takes advantage of two
predictive models, one with high precision, one with high recall, to
balance the intervention actions with the aim of balancing the two
costs. We show that the current infection rate (or in epidemiological
terms, the effective reproduction number Rt ), should drive the
minimum recall needed to stop the epidemic. Through experiments
on the epidemic simulator of the PAPW 2020 Challenge on Mobility
Intervention for Epidemics, we show how a single predictive models
leads to a high cost in interventions or in infections, while the
proposed approach obtain a substantial improvement in reducing
both. The proposed approach has reached the third place in the
challenge.

2 BACKGROUND
We hereby describe how the infection and intervention cost can be
measured, and how the dynamics of infections and interventions
in a real epidemic scenario have been modeled in the simulator of
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the PAPW 2020 Challenge on Mobility Intervention for Epidemics1.

Cost. Following a simplified version of the definitions and design
used in the aforementioned challenge model, we formally define
this dual cost as following. Given the cumulative number of infected
cases in a 60 days episode I , and an isolation countQ = λiNisolated ,
where Nisolated is the count of person-days that sums each day
that each person has been isolated, the overall cost of the strategy
is:

cost = e
I
θI + e

Q
θQ (1)

In this definition, λi ,θI ,θQ are parameters of the cost, set in the
challenge as λi = 0.5, θI = 500 and θQ = 10000.

Infection stages. An individual’s health state can go through
the following stages, in order:

• Stage 1: Susceptible. The individual has no infection there-
fore is liable to be infected. When infected from a contagious
person, the individual moves to Stage 2.

• Stage 2: Pre-symptomatic. The individual is infected and con-
tagious, but not yet detected. The infection is not observable.
After an incubation period that can randomly go from 1 to 5
days, the individual moves to Stage 3.

• Stage 3: Symptomatic. The individual is infected and conta-
gious, the infection is detected and observable.

• Stage 4: Symptomatic critical. The individual is infected,
contagious and with critical health condition.

• Stage 5: Recovered. The individual is recovered, non-contagious
and cannot be infected again. An individual self-recover after
a period that can randomly go from 15 do 30 days.

Interventions. At the start of each day, the policy can decide
whether to isolate an individual or not until the next day. When
individuals are isolated, they cannot be infected, if they are in Stage
1, or infect anyone, if they are in one of the infected stages. We omit
details on additional types of interventions, provided in the original
simulator of the PAPW ’20 Challenge, as these interventions are not
used in the proposed approach.

Scenarios.We consider 5 different epidemic scenarios. In all the
scenarios, 10000 people are simulated for 60 days. On weekdays,
individuals spend 1 to 3 hours in their residential areas, then they
move to work areas for 7 to 10 hours. After work, they may visit
a commercial area with a certain probability and stay there 1 to
2 hours. At any time and place, a free susceptible individuals can
get infected from a contagious person from the set of their work
or residential acquaintances, with probability Pc = 0.025, or they
could get infected from random strangers in the same area, with
a lower probability Ps = 0.005. The above settings hold for the
default Scenario 1, while the rest of the scenarios slightly deviates
from it as following: Scenario 2 has double infection probability
(Pc = 0.05, Ps = 0.01); Scenario 3 has 98 areas instead of the default
11; Scenario 4 starts on the first day with 300 infected individuals
randomly picked; Scenario 5 has a larger range of start working

1https://hzw77-demo.readthedocs.io/en/round2/simulator_modeling.html

time, with individuals staying in the residential areas for 1 to 8
hours before moving to work.

Note that, during the first 20 days of each scenarios apart from
Scenario 4, some people are randomly infected to simulate infec-
tions from outside the environment.

3 PROPOSED METHOD
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Figure 2: Full approach with high-recall and high-precision
predictors.

In the proposed approach, two predictive models are trained, one
with high precision, one with high recall, as shown in Figure 2. At
each day, based on the current infection rate, one or the other model
is used to predict whether each individual will be symptomatic in
the next 5 days, and isolate all the predicted.

3.1 Prediction
The training set for the predictive models is built on a set of engi-
neered features, each set representing the observation of an indi-
vidual in environment. This set of features can be divided in local
features and global features. The local features are specific for each
individual:

• Ratio of acquaintances (residential and working), detected
as symptomatic in the last 5 days.

• Probability of being infected based on number of times the
individual was in the same time and place of a detected
individual. (residential areas, working areas, commercial
areas).

• Fraction of time spent under intervention in the last 5 days.
• State of infection of the individual.

The global features are the same for all the individual:
• Current time in episode as fraction of the whole episode.
• Day of the week, as a one hot encoding vector of size 7.
• Global infection state as new infected (binary), fraction of
infected, fraction of new discovered in last step.

• Fraction of isolated individuals.
• Fraction of recovered individuals.

The predictive model is a Gradient Boosting Machine [2], opti-
mizing a class-weighted log-loss defined as:

Lw0,w1 (y, ŷ) = −
1
N

N∑
i=1

w1yi log(ŷi ) +w0(1 − yi ) log(1 − ŷi ) (2)
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with y the ground truth vector of size N , where yi = 1 if the
individual i was symptomatic in the following 5 days, yi = 0 if the
individual stayed in the susceptible stage during the subsequent
5 days, ŷ is the vector of predictions, w1 is the weight of the pos-
itive class error (infected), w0 is the weight of the negative class
error (not infected). A class-weighted loss is a common approach in
cost-sensitive classification, usually applied in the presence of un-
balanced samples [3]. Using the above loss, we can obtain a model
with greater recall by increasing the value of positive weight class
w1 with respect tow0.

3.2 Control
If an individual is detected as symptomatic, this is isolated by default,
until found to be recovered. If an individual is susceptible, the
related observation is used to get a prediction from the two models.
Then, the fraction of new infected is used in a rule-based decision
using a threshold γ and the current fraction of new infected Inew :

• If Inew ≤ γ , the prediction from the high-precision model is
used to for the isolation action.

• If Inew > γ , the prediction from the high-recall model is
used until the end of the episode to contain the surge of
infections. Additional, in the first 5 days after this event, all
the individuals with a visit risk higher than a threshold are
also isolated to further increase the recall.

By employing a higher recall prediction when the rate of infec-
tion is high, we ensure that the outbreak is contained. Generally
speaking and under some assumptions (i.e. the intervention period
is equal to the generation time), if 1 − 1

R0
< recall the epidemic is

contained. In Figure 3 we illustrate this by simulating the first two
weeks of an epidemic with different reproduction numbers R0 and
100 cases on the first day. With R0 = 2, a system with a detection
recall of 0.6 is sufficient to slow down and stop the epidemic after
two weeks. If the same predictive model is applied when R0 = 2.6,
however, this is not enough to contain the outbreak. Applying a
model with a recall of 0.8 to the same R0, the epidemic is quickly
contained within a week.

Tuning the recall of interventions depending on the infection
rate allows us to effectively balance between recall and precision
and, consequently, between the cost of extensive intervention and
the cost of an epidemic outbreak.

4 RESULTS
We run three different methods for 20 episodes each: a model that
only uses the high precision predictor, a model that only uses the
high recall prediction, and finally the full approach presented in the
paper. We choose to show the result for Scenario 2, as it is the most
difficult scenario considering the higher probability of infections.
The average cost and its breakdown in intervention and infection
cost are shown in Table 1.

In this scenario, the high precision method obtains the worst
result. Almost 3/4 of the cost is due to the high number of infections.
Since by default we isolate infected individuals, the intervention
cost is nevertheless conspicuous. Because the Scenario 2 has a
higher probability of infection, a model with high recall is much
more effective. For this model, the intervention cost prevail in the
overall cost with a percentage of 99.83%. Finally, the proposed
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Figure 3: Simulation of epidemics with R0 = 2 and R0 = 2.6.
A model with recall 0.6 is sufficient for R0 = 2 but it results
in an outbreak if R0 = 2.6.

approach, which adaptively enable the high recall model when a
super spread is taking place, obtains the best average result, with a
cost that it is also mainly due to the interventions.

Method Total cost % infection
cost

% intervention
cost

High precision 49032.76 74.8% 25.2%
High recall 1179.20 0.17% 99.83%
Full approach 411.49 1.94% 98.06%

Table 1: Total cost for each method and percentages of cost
for intervention and infection. Note that since we isolate in-
fected people by default, higher infections will also result in
additional interventions.

5 CONCLUSION AND FUTUREWORK
In this paper we presented a method that balances between high
recall and high precision to detect and isolate infected individuals.
We have shown that, depending on the current infection rate, a
different level of recall is required to contain the epidemic. Taking
advantage of this observation in the proposed solution, we obtain a
lower overall cost and a better balance between infection costs and
intervention costs. As a future work, we plan to design a prediction
model that adaptively changes its sensitivity at inference time,
depending on external parameters such as the global infection rate.
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