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ABSTRACT
As the conronavirus disease 2019 (COVID-19) has become a pan-
demic in a global scale, it is urgent to take effective interventions to
suppress the spread of the epidemic. A challenge to design mobility
intervention strategies is held by Workshop of Prescriptive Ana-
lytics for the Physical World (PAPW 2020). The task is to look for
effective human mobility intervention policies during an epidemic
outbreak. Generally, its goal is to minimize the total number of
infected people and minimize the intervention on human mobility.
In this paper, we present our winning solution to the challenge
where a genetic algorithm (GA) is used to solve the problem and
won the 2nd place of the challenge.

CCS CONCEPTS
• Applied computing→Health informatics;Multi-criterion
optimization and decision-making.
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1 INTRODUCTION
On 30-th January 2020, the epidemic of coronavirus disease 2019
(COVID-19) is declared by the World Health Organization (WHO)
as a public health emergency of international concerned, the high-
est level emergency response for infectious disease. The number
of infected cases is still accelerating in the whole wide world. In
order to end the global pandemic, multiple intervene strategies can
be applied, such as social distancing, contact tracing and so on.
Thus, it is critical to assess the effects of these measures on the
epidemic progression. Under such a circumstance, Workshop of
Prescriptive Analytics for the Physical World (PAPW 2020) hosted
a challenge to design mobility intervention strategies to contain
an epidemic[1]. The challenge aims to look for effective human
mobility intervention policies to minimize the spread of the virus
during an epidemic outbreak. Generally, the goal is to minimize the
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total number of infected people and minimize the intervention on
human mobility at the same time.

2 SIMULATOR MODELING
The simulator used in the competition simulates individual mobility
in a city of 3 categorical areas (working, residential, and commer-
cial) with 10000 people for 60 days. It employs the susceptible-
infectious-recovered (SIR) model [6] for spread of disease, and runs
the individual-level epidemic simulation according to the interven-
tion strategy. According to the SIR model, an individuals health
status includes 5 stages: susceptible, pre-symptomatic, symp-
tomatic, critical and recovered. And there are 5 levels of mobility
intervention: No intervene, Confine:, Quarantine, Isolate and
Hospitalize.

In the following part we will briefly introduce the models and
scenarios used in the simulator. For more details about the simulator,
please refer to its official documentation [2].

2.1 Human mobility model
The simulator simulates the human mobility with one simulation
step corresponding with one hour in the real world. An individual
has different modes of mobility during weekdays and weekends. On
weekdays, an individual will start from residential area to working
area at a certain time 𝑇𝑑

𝑠𝑡𝑎𝑟𝑡 , and stay there for 𝑇𝑤𝑜𝑟𝑘 hours. After
work, they may visit a nearby commercial area with probability
𝑃𝑑𝑐𝑜𝑚 and stay there for 𝑇𝑑

𝑐𝑜𝑚 hours. Then, they will return to resi-
dential area. On weekends, people may visit a random commercial
area at a certain time 𝑇 𝑒

𝑠𝑡𝑎𝑟𝑡 with probability 𝑃𝑒𝑐𝑜𝑚 and stay there
for 𝑇 𝑒

𝑐𝑜𝑚 hours. After that, they will return to residential area.

2.2 Disease transmission model
The disease can transmit from an infected individual through two
kinds of contacts:
Acquaintance contacts: An individual has a fixed small group
of acquaintance contacts. At each time step, there is a probability
𝑃𝑐 for an individual to get infected from an infected acquaintance
contact.
Stranger contacts:An individual could be in contact with strangers
visiting the same area at the same time. At each timestamp, there is
probability 0.005 for an individual to get infected from an infected
stranger contact.
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2.3 Competition scenarios
5 scenarios are provided with the following specified parameters:
Scenario 1 - default: default parameters are specified in the pre-
vious section.
Scenario 2 - higher infection rate: infection rate from both ac-
quaintance and stranger contacts are higher.
Scenario 3 - More areas in the city: there will be much more
areas in the city.
Scenario 4 - larger initial infected population: there is a large
infected population at the beginning of the simulation.
Scenario 5 - larger range of start-working time: each individ-
ual have a larger range of time to go to work.

2.4 Evaluation metrics
The total number of infected people and the intervention on hu-
man mobility are both considered in the score calculation for the
competition:

𝑠𝑐𝑜𝑟𝑒 = exp( 𝐼

500
) + exp( 𝑄

10000
)

where 𝐼 is the accumulated number of infected people, and𝑄 is the
weighted sumof𝑁𝑣 (𝑣𝑖𝑛{ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒𝑑, 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑, 𝑞𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒𝑑, 𝑐𝑜𝑛𝑓 𝑖𝑛𝑒𝑑})
which is the number of the intervention actions for one day.

3 METHOD DESCRIPTION
In this section, we first introduce the framework of our algorithm,
and then explain the further improvements in detail.

3.1 Solution framework
To generate our solutions, we used genetic algorithm (GA) [4] to
find the intervention strategies. GA are a family of computational
models inspired by evolution. They are robust search and optimiza-
tion techniques due to their capacity to locate the global optimum.
Thus, GAs are often used to find complex, non-obvious solutions
to algorithmic optimization and search problems [3, 5].

Generally speaking, a basic GA contains the following proce-
dures:

• Initialization: some initial solutions are created, either ran-
dom or “blank”

• Evaluation: measure the performance of different solutions
• Evolution: crossover and mutate from the current solutions
to generate better solutions.

We apply the above algorithm and use a template for strategies
based on the variant versions the strategy model proposed for the
quick test. The procedures of GA and details about the variant
version of the strategy template can be found in 1.

As shown in Fig. 1, we consider each strategy as a joint of two
gene segments. In the first segment, it consists of the intervene
operations for different infection states, and the second segment
consists of the intervention days for the confine, quarantine and
isolate operations, respectively. The intervene options is enlarged
to include all types of operations (no intervene, confine, quaran-
tine, isolate and hospitalized) for each state, and the range of con-
fine/quarantine/isolate days are enlarged to {3, . . . , 30}. In the it-
eration steps of the strategy evolution, one generation is broken
down into a crossover phase and mutation phase. In the crossover
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Figure 1: Procedures of GA: one generation is broken down
into a crossover phase and mutation phase.

phase, we execute the partial exchange of strategies using a fixed
cross site with probability 𝑃𝑐𝑥 . The cross site separates two gene
segments in the strategy. In the mutation phase, we carry out inde-
pendent mutation for each element in the strategy with probability
𝑃𝑚𝑢𝑡 and 𝑃𝑖𝑛𝑑 to generate the off-springs. Finally, in the resulting
off-springs, 𝑘 randomly selected children are replaced by the top 𝑘
strategies from the parent generation. In most of our submissions,
𝑘 is set to 5.

3.2 Further improvement: distinguish the
scenarios and refine strategy

According to the configuration, scenario 2, 3, 4 can be easily dis-
tinguished according to some characteristics on the first day under
the test environment (scenario “submit”), so the strategies were
calculated according to each of the scenarios. Soon we realized that
an optimal solution was found in the mentioned strategy space,
which is suitable for all the 5 scenarios. By applying the strategy,
scenario 1, 2, 3 and 5 can achieve a score around 2.5, while the score
of scenario 4 is about 6.7. Naturally, we wondered if there is any
room for further improvement in scenario 4. It is noticed that we
only use the information of individual’s infection state, while the
information of “probability from infected” is left.
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Figure 2: ProbabilityDistribution ofAcquaintance / Stranger
Contacts under Different Scenarios.

Fig. 2 demonstrates that the probability distribution of acquain-
tance / stranger contacts in scenario 4 is significantly different from
other scenarios.

Consequently, to further improve the intervention result, the
situations of both “acquaintance contact” and “stranger contact”
are substituted by two sub-situations respectively, which are distin-
guished with the aggregated probability of contacts, i.e. one with
the probability larger than a threshold and one with the probability
smaller than the threshold.

The proper threshold is determined according to the quantitative
analysis of the statistics of the experiment processes and a grid
search in the candidate value range.

3.3 Results
The strategy used in our best submission (total score 21) is , and the
detailed scores for the five scenarios are: scenario 1: 2.42; scenario
2: 2.64; scenario 3: 2.44; scenario 4: 5.76; scenario 5: 2.43.

For scenario 4, by applying the refined strategy, the scores are
improved to around 5.7 according to our evaluations in running
the submit processes.

4 CONCLUSION AND DISCUSSION
In this paper, we present our solution algorithm and tricks for
improvement, which is capable to effectively contain the epidemic.
A simple genetic algorithm is developed to provide solutions, with
a variant version of strategy template proposed for the quick test
by official. In order to minimize the evaluation metric of some
scenarios, we extended the strategy template based on the analysis
results. We do hope these findings may inform public health policy

for countries and regions to combat the global pandemic of COVID-
19.

Nevertheless, it remains a lot work to do for the study of epidemic
control. For example, from a modeling perspective, the number
of people, areas and activities in each scenario is too small, and
we omit the probability rate of death and becoming susceptible
again. In the long run, in order to better evaluate the intervene
strategy, on the one hand, we hope to improve the above cons of
the simulator, on the other hand, we are particular interested in
prediction over trends of epidemic transmission in a relatively short
horizon. And we believe these will better guide the implementation
of intervention strategies.
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