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ABSTRACT
In this work, we introduce an RL (Reinforcement Learning) algo-
rithm to optimize the mobility intervention strategy in order to
control the epidemic spreading. The performance of the proposed
method is evaluated via interacting with the simulator provided by
PAPW 2020 [1]. In the simulated environment, physical condition of
each individual is dynamically classified into 5 cases. We developed
different intervention strategies for different physical conditions.
Our method help us win the first place in the competition.
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1 INTRODUCTION
At present, COVID-19 is sweeping the world. The latest data from
the World Health Organization shows that as of 10:00 on July 23
(Central European Time), the cumulative number of confirmed
cases has reached about 15,012,731[6]. Under such a background,
the Workshop of Prescriptive Analytics for the Physical World
(PAPW 2020) organized a challenge of designing mobility interven-
tion strategies for epidemics[5]. Participants are required to design
effective mobility intervention strategies to contain epidemics. The
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performance of the strategy is evaluated by an epidemic simulator
provided by the competition organizer. Specifically, the score of the
applied intervention strategy is defined as follows.

Score = exp
{
𝐼

𝜃𝐼

}
+ exp

{
𝑄

𝜃𝑄

}
,

where 𝐼 is the total number of infected people; 𝑄 is the weighted
sum of times that each of the five intervention operations (i.e. none,
confine, quarantine, isolate and hospitalize) is performed; 𝜃𝐼 and 𝜃𝑄
are predefined scaling factors. Finally, the performance of a strategy
is evaluated by the average score over multiple runnings with five
distinct scenarios [5].

Reinforcement learning is essentially a sequential decision pro-
cesses, and has gained great successes in many applications during
the last decades [2, 4, 7]. It is natural that we design RL algorithms
for this challenge, as the epidemic control strategy is actually a
sequence of decisions. The epidemic situation and the interventions
can be modeled as RL states and actions, respectively.

The main contribution of our method includes

• proposing a reinforcement learning approach to contain
epidemics, and learning intervention strategies for different
physical conditions.

• introducing an auxiliary-strategy-based learning method,
where the strategy learned for those who got infected by
strangers, helps deciding what intervention actions should
be applied to all infected individuals.

2 METHOD
For an individual 𝑣 , we use 𝑝𝑎𝑐𝑞 (𝑣) to denote the probability that 𝑣
is infected via the contacts with the acquaintances, and use 𝑝𝑠𝑡𝑟 (𝑣)
to denote the probability that 𝑣 is infected via the contacts with the
strangers.

At first, we performed some basic rules. For recovered individ-
uals and those infected ones who are in the hospital, none of the
interventions will be performed. Similarly, for individuals who has
a zero probability for both acquaintance infection and stranger in-
fection, none of the interventions will be performed. The remaining
individuals are further divided into 5 cases, and the corresponding
intervention strategies are learned respectively. Furthermore, we
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Figure 1: Population classification.

Figure 2: The basic flow of the method.

restrict preferred intervention choices according to the environ-
mental simulator and effective experience in the real world , as
shown in Figure 1. Detailed description are listed as follows.

• Case 1. For individuals with 𝑝𝑎𝑐𝑞 (𝑣) ≥ 0.05, we believe that
they have high-infected-risks. Accordingly, quarantine is our
preferred intervention in the learning process.

• Case 2. For individuals with 0 < 𝑝𝑎𝑐𝑞 (𝑣) < 0.05, confine is
preferred.

• Case 3. For individuals with 𝑝𝑠𝑡𝑟 (𝑣) > 0, none is set as the
preferred intervention in the learning process.

• Case 4. For individuals that have shown symptoms without
severe illness, there is no preference among intervention
choices.

• Case 5. For individuals that have shown symptoms with
severe illness, we do not have preferred interventions.

Then, We conduct RL algorithm to learn intervention strategy
for each case. Together, Figure 1 and Figure 2 demonstrate our basic
ideas. As for our RL setting, we define states, actions and rewards
as follows.

States. We have considered the joint-state of all the 10, 000 indi-
viduals in the simulation. For each individual, the state consists of
the following 8 dimensions.

(1) The individual’s infection state, i.e. state 1/3/4/5 according
to the simulator API [5].

(2) The interference state of this individual, i.e. state 0/1/2/3/4/5
according to the API.

(3) The aggregated infection probability within 5 days. Accord-
ing to the API, there are acquaintance infection probability
and stranger infection probability. So we have 2 dimensions
here, i.e. acquaintance infection state, stranger infection
state.

(a) Acquaintances infection state: the state is set to 2 if the ag-
gregated probability is greater or equal to 0.05, and 1 if the
aggregated probability is between 0 and 0.05. Otherwise,
the state is 0.

(b) Stranger infection state: the state is 1 if the aggregated
probability is greater than 0; otherwise the state is 0.

(4) Time information.
(5) Day type: weekday or weekend.
(6) The number of contacts with acquaintances.
(7) The number of stranger contacts.

Action. The action space has 6 dimensions, The first 5 dimensions
indicate the preference of each intervention choice, i.e., {none, con-
fine, quarantine, isolate, hospitalize}, for different population cases
after classification, i.e., {case 1, case 2, case 3, case 4, case 5}. The last
dimension indicate the duration of performing an intervention. We
demonstrate our action design in Figure 3.

With the multi-level interventions, the preference of an specified
intervention is reflected by associating it with a wider value range.
First, we reckon that different cases have different levels of priority.
For example, when an individual belongs to case 1 and case 3 at the
same time, priority should be given to case 1 because the population
in case 1 is the high-risk group. Second, we reckon that different
interventions have different levels of priority. For example, when an
individual belongs to different cases but with the same priority level
at the same time, such as case 2 and case 3, the intervention with
higher priority level is performed. The priorities of the interventions
is defined as isolate > quarantine > confine > none.

Figure 3: Values of the first 5 dimensions of RL action.

As for the last dimension, its value is ranged from 1 to 30. In
particular, we found that the resulting strategy is slightly better if
the action duration is always set to 1. However, this modification
will cost a longer time period to learn an efficient strategy.

Reward. The reward of an action is defined as the incremental
part of the cumulative scores between consecutive days.
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To solve this RL problem, we use Proximal Policy Optimiza-
tion (PPO) method [3], which execute multiple steps of mini-batch
gradient decent updates by apply the experience in each iteration.

3 EXPERIMENTAL RESULTS
We have trained 3 models for 5 scenarios, especially for scenario
2, scenario 3, and scenario 4. In the evaluation phase, the method
of scenario 2 was directly applied to scenario 1, 2, and 5. Table 1
show the best scores after training. We save the best training results
every time for evaluation.

Table 1: The best scores during agent training

scenario 2 scenario 3 scenario 4
2.39 2.35 6.40

Through the analysis of the results of multiple scenarios, we
found an interesting pattern: the learned strategies with high scores
prefer to perform isolation and confine, while doing very little
or even no quarantine intervention and hospitalise intervention.
Therefore, we estimate the expectation of cumulative scores by
conducting single intervention all the time, and find out that re-
moving hospitalization choice resulting a better score. So we switch
hospitalization to isolation for 30 days, because patients can recover
themselves after 15-30 days, and the cost is lower than that of 15
days in the hospital. Experimental results show that our method
works, and we should speculate that the removal of quarantine may
also bring some improvement. Table 2 shows the final evaluation
score.

Table 2: The final evaluation score

scenario 1 scenario 2 scenario 3 scenario 4 scenario 5
2.5 2.59 2.44 6.67 2.42

4 CONCLUSIONS
In this paper, we propose a hybrid method to learn epidemic control.
We divide the population into 5 groups, and then learn effective
strategies via RL algorithm for each case.
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